
SPRING 2025: MATH 590 EXAM 2

You must show all work to receive full credit. No calculators or notes allowed.

Name:

Throughout the exam, all vector spaces are finite dimensional and are defined either over R or C.

(I) True-False. Write true or false next to each question. You do not have to justify your answer. (2 points
each)

(i) If A is a unitarily diagonalizable square matrix over C, then A is self adjoint. False.Such a matrix is
normal, but not necessarily self-adjoint.

(ii) For A an n × n matrix over R and v, w ∈ Rn, ⟨Atv, w⟩ = ⟨v,Aw⟩. True. ⟨Atv, w⟩ = ⟨v,Attw⟩ =
⟨v,Aw⟩

(iii) If A is an n × n normal matrix over C, then A has its eigenvalues in R. False, as exhibited by(
0 −1
1 0

)
.

(iv) Any self-adjoint complex matrix is a normal matrix. True.

(v) Suppose A is a 2 × 2 diagonalizable matrix with pA(x) = (x − 7)2. Then A =

(
7 0
0 7

)
. True. If

P−1AP = 7 · I2, then A = P (7 · I2)P−1 = 7 · PI2P
−1 = 7 · I2.
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(II) Statements. State the following theorems. Define all relevant terms in each of the statements
(but you do not have to define inner product). (5 points each)

1. State the theorem characterizing when a matrix is diagonalizable.

Solution. The matrix A is diagonalizable if and only if pA(x) = (x− λ1)
e1 · · · (x− λr)

er and dim(Eλ1) = ei,
for all 1 ≤ i ≤ r.

Here: Eλi
denotes the eigenspace of the eigenvalue λi.

2. State the theorem describing the Gram-Schmidt process as it applies to the set {v1, v2, v3} of linearly
independent vectors.

Solution. An orthogonal set w1, w2, w3 satisfying Span{v1, v2, v3} = Span{w1, w2, w3} is obtained as follows:

w1 = v1

w2 = v2 −
⟨v2, w1⟩
⟨w1, w1⟩

· w1

w3 = v3 −
⟨v3, w1⟩
⟨w1, w1⟩

· w1 −
⟨v3, w2⟩
⟨w2, w2⟩

· w2

Note: The vectors w1, w2, w3 are an orthogonal set if ⟨wi, wj⟩ = 0, for i ̸= j.

3. State the Complex Spectral Theorem for matrices.

Solution. A complex matrix is normal if and only if it is unitarily diagonalizable.

Note: A is normal if, AA∗ = A∗A, where A∗, the adjoint of A, is the conjugate transpose of A and the
matrix diagonal Q is unitary if Q−1 = Q∗.

4. State the Singular Value Decomposition Theorem

Solution. Given and m× n matrix over R, there exist orthogonal matrices Q and P and an m× n diagonal
matrix

∑
such that A = Q

∑
P t = Q

∑
P−1. The non-zero diagonal entries of

∑
are arranged as σ1 ≥

· · · ≥ σr, and are called the singular values of A, and occur as the square roots of the non-zero eigenvalues
of ATA.

A matrix P over R is orthogonal if P t = P−1.

(III) Calculation problems. (15 points each)

1. For A =

 2 0 2i
0 1 0
−i 0 3

, determine if A is diagonalizable, unitarily diagonalizable, or not diagonalizable.

If A is diagonalizable or unitarily diagonalizable, find the appropriate diagonalizing matrix P , but you do
not have to check the P−1AP product.
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Solution. AA∗ =

 8 0 5i
0 1 0

−8i 0 10

, A∗A =

5
, so AA∗ ̸= A∗A, and thus A is not normal, and therefore

not unitarily diagonalizable.

pA(x) =

∣∣∣∣∣∣
x− 2 0 −2i
0 x− 1 0
i 0 x− 3

∣∣∣∣∣∣ = (x − 1){(x − 2)(x − 3) − 2} = (x − 1)2(x − 4). Thus, λ = 1, 4 are the

eigenvalues of A.

E1 = null space of

 1 0 2i
0 0 0
−i 0 2

 EROs−→

1 0 2i
0 0 0
0 0 0

, so E1 has basis

0
1
0

 ,

 2i
0
−1

.

E4 = null space of

−2 0 2
0 −3 0
−i 0 −1

 EROs−→

i 0 1
0 1 0
0 0 0

, so E4 has basis

−1
0
i

. Since the algebraic multi-

plicity equals the geometric multiplicity for each eigenvalue, P is diagonalizable, with diagonalizing matrix0 2i −1
1 0 0
0 −1 i

.

2. Find the singular value decomposition for the matrix A =

1 1
0 0
2 −2

. Verify that your decomposition

works.

Solution. AtA =

(
1 0 2
1 0 −2

)1 1
0 0
2 −2

 =

(
5 −3
−3 5

)
. pAtA(x) = (x − 5)2 − 9 = (x − 8)(x − 2). Thus,

the eigenvalues of AtA are 8, 2, so the singular values of A are
√
8,
√
2. In particular,

∑
=

√
8 0

0
√
2

0 0

. To

find u1, u2, we orthogonally diagonalize AtA.

E8 = null space of

(
−3 −3
−3 −3

)
EROs−→

(
1 1
0 0

)
, so E8 has orthogonal basis u1 =

(
1√
2

− 1√
2

)
.

E2 = null space of

(
3 −3
−3 3

)
EROs−→

(
1 −1
0 0

)
, so E2 has orthogonal basis u2 =

(
1√
2
1√
2

)
.

Thus, we take P =

(
1√
2

1√
2

− 1√
2

1√
2

)
. For the columns of Q, we calculate

v1 = 1√
8

1 1
0 0
2 −2

( 1√
2

− 1√
2

)
=

0
0
1

 and v2 = 1√
2

1 1
0 0
2 −2

( 1√
2
1√
2

)
=

1
0
0

. If we take v3 =

0
1
0

, we get

an orthonormal basis for R3. Therefore, we take Q =

0 1 0
0 0 1
1 0 0

, so that A = Q
∑

P t, is the singular value

decomposition of A.

To verify this: Q
∑

P t =

0 1 0
0 0 1
1 0 0

√
8 0

0
√
2

0 0

( 1√
2

− 1√
2

1√
2

1√
2

)
=

 0
√
2

0 0√
8 0

( 1√
2

− 1√
2

1√
2

1√
2

)
=

1 1
0 0
2 −2

.
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3. Given A =

(
1 2
−2 1

)
, verify that A is a normal and find a unitary matrix Q that diagonalizes A. You

do not have to verify that the matrix Q works.

Solution. AAt =

(
5 0
0 5

)
= AtA, so A is a normal matrix. pA(x) = (x − 1)2 + 4 = x2 − 2x + 5, which has

roots 1± 2i.

E1+2i = nullspace of

(
−2i 2
−2 −2i

)
EROs−→

(
1 i
0 0

)
, so an orthonormal basis for E1+2i is

1√
2

(
1
i

)
.

E1−2i = nullspace of

(
2i 2
−2 2i

)
EROs−→

(
i 1
0 0

)
, so an orthonormal basis for E1−2i is 1√

2

(
i
1

)
. Thus, the

matrix Q = 1√
2

(
1 i
i 1

)
unitarily diagonalizes A.

,

(IV) Proof Problem. State the general form of the real spectral theorem, and then prove the theorem for
2× 2 matrices. (25 points)

Solution. The Spectral Theorem for real matrices states that a matrix with entries in R is symmetric if and
only if it is orthogonally diagonalizable.

Let A =

(
a b
b c

)
. We first note that A has real eigenvalues. For this, pA(x) = (x − a)(x − c) − b2 =

x2−(a+c)x+(ac−b2). To see that this polynomial has real roots, we just have to see that the discriminant,
(a+ c)2 − 4(ac− b2 ≥ 0. But this is easily seen to be (a− c)2 + b2, which is always greater than or equal to

zero. Note that if the discriminant equals zero, A =

(
a 0
0 a

)
, and there is nothing to do.

Assuming the discriminant is non-zero, pa(x) has two distinct real roots, λ1, λ2, the eigenvalues of A. Take
v1 ∈ Eλ1 and v2 ∈ Eλ2 . Then,

λ1⟨v1, v2⟩ = ⟨λ1v1, v2⟩ = ⟨Av1, v2⟩ = ⟨v1, Av2⟩ = ⟨v1, λ2v2⟩ = λ2⟨v1, v2⟩.
Here we used the fact that ⟨Av1, v2⟩ = ⟨v1, Av2⟩, since A is symmetric. Thus, λ1⟨v1, v2⟩ = λ2⟨v1, v2⟩. Since
λ1 ̸= λ2, we must have ⟨v1, v2⟩ = 0, so that v1 is orthogonal to v2. If we now take u1 = 1

||v1|| · v1 and

u2 = 1
||v2|| · v2, then u1, u2 is an orthonormal basis for R2 consisting of eigenvectors for A, which is what we

want.

For the converse, suppose that A is orthogonally diagonalizable, i.e., P−1AP = D, where D is diagonal and
P is orthogonal, i.e., P−1 = P t. Then A = PDP t. Thus,

At = (PDP t)t = P ttDtP t = PDP t = A,

since D = Dt, for diagonal matrices. Therefore, A is symmetric.
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